

02 - 05.4

Control valves, starting G 92 ...

Kv coefficient calculation

Calculation itself is carried out with respect to conditions of regulating circuit and operating medium according to equations mentioned below. Control valve must be designed to be able to regulate maximal flow quantity at given operating conditions. At the same time it is necessary to check whether minimal flow quantity can be even regulated or not.

Because of eventual minus tolerance 10% of Kv₁₀₀ against Kvs and requirement for possible regulation within range of maximal flow (decrement and increase of flow), producer recommends to select Kvs value higher than maximal operating Kv value:

Kvs = 1.2 ÷ 1.3 Kv

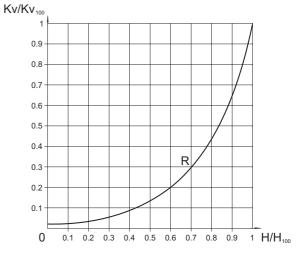
It is necessary to take into account to which extent $Q_{_{\rm max}}$ involve "precautionary additions" that could result in valve oversizing.

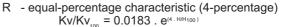
		Pressure drop	Pressure drop					
		$p_{2} > p_{1}/2$	∆p ≧ p₁/2					
		∆p < p₁/2	p₂ ≦ p₁/2					
	Liquid	$\frac{Q}{100}\sqrt{\frac{\rho_1}{\Delta p}}$						
Kv =	Gas	$\frac{Q_{n}}{5141}\sqrt{\frac{\rho_{n}.T_{1}}{\Delta p.p_{2}}}$	$\frac{2.Q_n}{5141.p_1}\sqrt{\rho_n.T_1}$					
	Superh. steam	$\frac{Q_m}{100}\sqrt{\frac{v_2}{\Delta p}}$	$\frac{Q_m}{100}\sqrt{\frac{2v}{p_1}}$					
	Sat. steam	$\frac{Q_m}{100}\sqrt{\frac{V_2.X}{\Delta p}}$	$\frac{Q_m}{100}\sqrt{\frac{2v.x}{p_1}}$					

Relations of Kv calculation

Above critical flow of vapours and gases

When pressure ratio is above critical ($p_1/p_2 < 0.54$), speed of flow reaches acoustic velocity at the narrowest section. This event can cause higher level of noisiness.

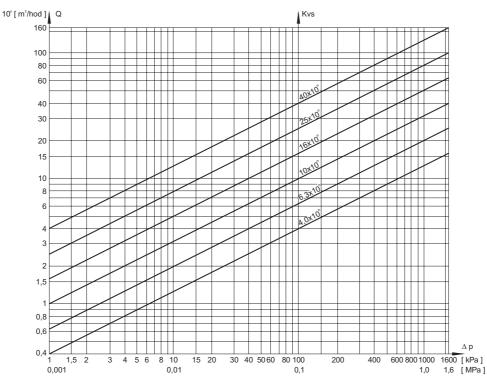

Cavitation


Cavitation is a phenomenon when there are steam bubbles creating and vanishing in shocks - generally at the narrowest section of flowing due to local pressure drop. This event expressively cuts down service life of inner parts and can result in creation of unpleasant vibrations and noisiness. In control valves it can happen on condition that

$$(p_1 - p_2) \ge 0.6 (p_1 - p_s)$$

Valve differential pressure should be set the way so that neither any undesired pressure drop causing cavitation can occur, nor liquid-steam(wet steam) mixture can create. Otherwise it must be taken into account when calculating Kv value.

Valve flow characteristic



Dimensions and units

Marking	Unit	Name of dimension
Kv	m³/hour	Flow coefficient under conditions of units of flow
Kv ₁₀₀	m³/hour	Flow coefficient at nominal stroke
Kvs	m³/hour	Valve nominal flow coefficient
Q	m³/hour	Flow rate in operating conditions (T ₁ , p ₁)
Q _n	Nm ³ /hour	Flow rate in normal conditions (0°C, 0.101 MPa)
Q _m	kg/hour	Flow rate in operating conditions (T ₁ , p ₁)
p ₁	MPa	Upstream absolute pressure
p ₂	MPa	Downstream absolute pressure
p _s	MPa	Absolute pressure of saturated steam at given temperature (T ₁)
Δρ	MPa	Valve differential pressure ($\Delta p = p_1 - p_2$)
$\overline{\rho_1}$	kg/m ³	Process medium density in operating conditions (T ₁ , p ₁)
$\overline{\rho_n}$	kg/Nm ³	Gas density in normal conditions (0°C, 0.101 MPa)
V ₂	m³/kg	Specific volume of steam when temperature T_1 and pressure p_2
v	m³/kg	Specific volume of steam when temperature T_1 and pressure $p_1/2$
T ₁	K	Absolute temperature at valve inlet $(T_1 = 273 + t_1)$
х	1	Proportionate weight volume of saturated steam in wet steam

Diagram for the valve Kvs value specification according to the required flow rate of water Q and the valve differential pressure Δp

The diagram serves to specify the valve Kvs value regarding to the required flow rate of water at a given differential pressure. It can be also used for finding out the differential pressure value of the existing valve in behaviour with the flow rate. The diagram apllies to water with the density of 1000 kg/m³.

For the value Q = q .10ⁿ, it is necessary to calculate with Kvs = k .10ⁿ. Example: water flow rate of 16 .10⁻¹ = 1,6 m³ /hour corresponds to Kv = 2,5 = 25.10 when differential pressure 40kPa.

Valve complete specification No. for ordering G 92

		X XX	ХХХ	- X)	(XX	XXX ·	- XXX
1. Valve	Control valve	G					
2. Series	Control valve, strarting	92					
3. Flow direction	Angle		2				
4. Connection	Weld ends		2				
5. Actuating	Adjusted for remote control		5				
6. Material	Alloy steel 1.7357			2			
7. Nominal pressure PN	Acc. to the valve execution				XX		
8. Max. operating temp.° C	Acc. to the valve execution					XXX	
9. Nominal size DN	Acc. to the valve execution						XXX

Maximal permissible pressures acc. to EN 12 516-1 [MPa]

Material	PN	Temperature [°C]							
		200	250	300	350	400	450	500	550
Alloy steel 1.7357	400	37.4	35.7	33.3	30.9	28.9	26.7	22.3	8.8

Control valve, starting DN 150, PN 400

Description

The valve is single-seated, designed to be actuated with an electric rotating actuator. The piston type plug moves in a special control cage with holes and cross section grooves that, when the valve opens, gradually enlarge which provides a smooth regulation.

The valves are supplied with the actuators of the following producer: ZPA Pečky - Modact MO. On the basis of the customer's requirements, it is possible to supply the valve with the connection acc. to ISO 5210 with the actuators such as AUMA, Schiebel and so on. The actuator is mounted to the valve with the aid of adapter ZPA Pečky.

Application

The valves serves as a control valve applicable to where it is necessary to change the flow water pressure from its maximum value to minimum or vice versa. The max. operating pressures correspond to EN 12 516-1 see page 3 of this catalogue. The possible use for higher temperature must be agreed upon with the producer.

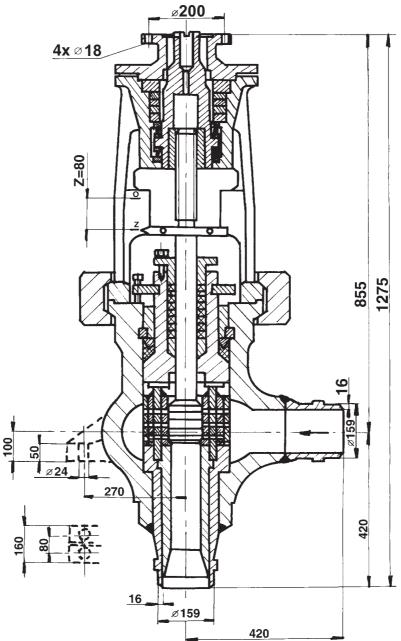
Technical data

Series	G 92 225 2400				
Type of valve	Control valve (starting), weld ends, angle				
Nominal size	150				
Nominal pressure	400				
Body material	Alloy steel 1.7357				
Weld ends material	Alloy steel 1.7335				
Process media temp. range	-20 to 550°C				
Connection *	ČSN 13 1070				
Type of trim	Special cage - piston type plug				
Flow characteristic	Equal-percentage acc. to ČSN 13 4509-1				
Flow area Fs [cm ²]	63				
Kvs value	191				
Leakage rate	Class II acc. to ČSN EN 1349 (5/2001)				

*) After the agreement with the producer, it is possible to make the connection acc. to the valid ČSN 13 1075 (3/1991) or ČSN EN 12 627 (8/2000)

Process media

The valve is designed to control the flow and pressure of water and steam. The valve max. differential pressure is 20,0 MPa with respect to the concrete conditions of operation (ratio p_1 / p_2 , creation of cavitation, above critical flow etc.)

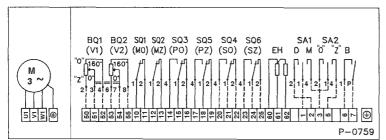

Installation

The valve can be installed only in a vertical position with the nut for the connection to the actuator being positioned up above the valve body. The valve should be piped the way so that the medium flow coincides with the arrows indicated on the valve body. With regard to the valve's dismantling, it is recommended to leave a clear space of up to 500 mm above the valve for easy approach. For safe operation, it is necessary so that there would be no bends or elbows piped at least 2000 mm behind the valve.

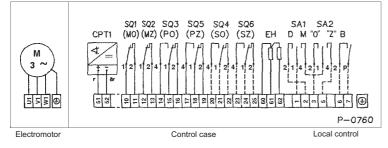
Dimensions and weights for G 92 225 2400

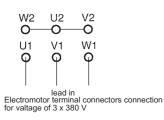
Weight of the valve is 617 kg

52 034


Electric actuators Modact MO ZPA Pečky

Technical data

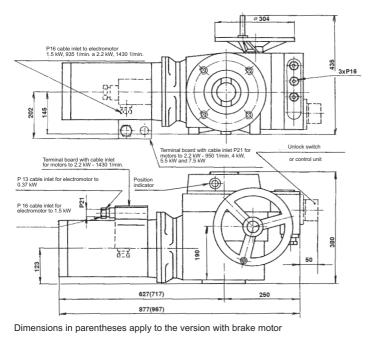

Туре	Modact MO					
Voltage	3 x 230 V / 400 V (3 x 220 V / 380 V)					
Frequency	50 Hz					
Motor power	See specification table					
Control	3 - position control					
Torque range	320 to 630 Nm					
Running speed	See specification table					
Enclosure	IP 55					
Process medium max. temperature	Acc. to used valve					
Ambient temperature range	-25 to 55 ℃					
Ambient humidity range	5 - 100 % with condensation					
Weight	max. 128 kg					


Wiring diagram of actuator Modact MO

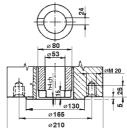
Execution of terminal board Position transmitter : resistance 2 x 100 Ω or is not built in

Position transmitter: capacity CPT 1/A 4-20 mA

SQ1 (MO)	torgue switch in "opening" direction
SQ2 (MZ)	torgue switch in "closing" direction
SQ3 (PO)	limit switch in "opening" direction
SQ5 (PZ)	signalisation switch in "opening" direction
SQ4 (SO)	signalisation switch in "closing" direction
SQ6 (SZ)	heaters $2 \times TR 551 10 k/A$
EH	capacity position transmitter
CPT1	CPT1/A4 - 20 mA
B	flasher
BQ1, BQ2	position transmitter $2 \times 100 \Omega$
SA1	switch "local - remote control"
SA2	switch "opening - closing"
SA2	switch "opening - closing"


Specification of actuator Modact MO

Basic equipm		2 limit swi				1	electromot	or (brake	e electron	notor on s	pecial rec	quest)
		2 torgue s	witches N	NO, MZ		2	heaters					
Basic technic												
	Torgu	e [Nm]	Running	Travel		Electr	omotor		Weigh	nt [kg]	Specification No.	
Туре	Tripping		range [ot]	Motor power [W]	Speed rpm	In (380V) [A]	<u>Iz</u> In	Cast execution	Aluminium execution	Basic	Additional	
MO 63/110-16			16		1,1	680	3,2	3,0	112	81		XX6X
MO 63/110-25			25		1,5	935	4,0	4,4	1107912088	79		XX7X
MO 63/110-40	320-630	1100	40	2-240	2,2	950	5,4	4,5		88		XX1X
MO 63/110-63	320-030	1100	63	2-240	3,0	1420	6,7	5,2	116	84	52 034	XX2X
MO 63/110-100			100		4,0	1440	8,7	6,5	128	96	1	XX3X
MO 63/110-125			125		5,5	2910	11,1	7,5	129	97		XX4X
Dimensions, o	electric co	onnection	and prote	ection to	environme	ent :						
Normalayaa	ution NL OC		drive turne	<u> </u>	Via termi	nal board	t					2XXX
Normal execu	1001 N 22		unve type	C	With coni	nector K	BSN					CXXX
Tranical avea	ution T 2		drive type	C	Via termi	nal board	d					7XXX
Tropical exec		z, output	unve type	C	With coni	nector K	BSN					HXXX
Local control,	position	indicator	and positi	on transı	mitter (a figi	ure in the 2	nd place of th	e spec. No	o. stands for	resist. pos. t	ransmitter o	of 2x100W)
Without local	control a	nd positio	n indicato	or							X1XX	XBXX
Local positior	n indicato	r									X2XX	
Local control	via local	control ur	nit 4)								X3XX	XDXX
Local control	via unblo	ck switch	4)								X4XX	XEXX
Local positior	n indicato	r and con	trol via lo	cal contro	ol unit 4)						X5XX	
Local positior											X6XX	
Signalisation,												
Without signa		position tr	ansmitter	and flas	her							XXX0
Position trans												XXX1
Signalisation												XXX2
Signalisation	transmitte	ers and p	osition tra	nsmitter								XXX3
Flasher												XXX4
Position transmitter, flasher										XXX5		
Signalisation transmitters and flasher										XXX6		
Signalisation												XXX7
Tripping torgu	ues, runni	ng times	and other	technica	al paramet	res are s	pecified to	gether w	vith their s	specification	on No. in	XXX


Tripping torgues, running times and other technical parametres are specified together with their specification No. in above-mentioned table. This place is reserved for a figure or a letter specifying the actuator's required parametres

⁴⁾ The actuators with terminal board are supplied with local control switch that substitutes both local control unit and unlock switch. They are supplied with the following executions: x4xx; x6xx; xExx

Dimensions of Modact MO actuator

Connection dimesnions - Output drive type C

